Solved

Rewrite as a Single Logarithm 4log4(4x+2)+3log4(5x+3)4 \log _ { 4 } ( 4 x + 2 ) + 3 \log _ { 4 } ( 5 x + 3 )

Question 62

Multiple Choice

Rewrite as a single logarithm. Assume all variables represent positive real numbers.
- 4log4(4x+2) +3log4(5x+3) 4 \log _ { 4 } ( 4 x + 2 ) + 3 \log _ { 4 } ( 5 x + 3 )


A) 12log4(4x+2) (5x+3) 12 \log _ { 4 } ( 4 x + 2 ) ( 5 x + 3 )
B) log4(4x+2) 4(5x+3) 3\log _ { 4 } \frac { ( 4 x + 2 ) ^ { 4 } } { ( 5 x + 3 ) ^ { 3 } }
C) log4((4x+2) 4(5x+3) 3) \log _ { 4 } \left( ( 4 x + 2 ) ^ { 4 } ( 5 x + 3 ) ^ { 3 } \right)
D) log4((4x+2) 4+(5x+3) 3) \log _ { 4 } \left( ( 4 x + 2 ) ^ { 4 } + ( 5 x + 3 ) ^ { 3 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions