Solved

The Following MINITAB Output Display Presents the Results of a Hypothesis

Question 7

Multiple Choice

The following MINITAB output display presents the results of a hypothesis test for the difference μ1μ2\mu _ { 1 } - \mu _ { 2 } between two population means.
 Two-sample T for X1 vs X2 N Mean  StDev  SE Mean  A 7145.41124.6699.324 B 14132.96425.6046.843\begin{array}{l}\text { Two-sample T for X1 vs X2 }\\\begin{array}{rrrcc} & \mathrm{N} & \text { Mean } & \text { StDev } & \text { SE Mean } \\\text { A } & 7 & 145.411 & 24.669 & 9.324 \\\text { B } & 14 & 132.964 & 25.604 & 6.843\end{array}\end{array}

Difference =mu(X1) mu(X2) =m u(X 1) -m u(X 2)
Estimate for difference: 12.447 12.447
95% 95 \% CI for difference: (10.222,35.116) (-10.222,35.116)
T-Test of difference =0( =0( vs not =) =) : \quad T-Value =1.076209 =1.076209
 P-Value =0.301402 DF =13\text { P-Value }=0.301402 \quad \text { DF }=13

What is the alternate hypothesis?


A) μ1μ2\mu _ { 1 } \neq \mu _ { 2 }
B) μ1>μ2\mu _ { 1 } > \mu _ { 2 }
C) μ1=μ2\mu _ { 1 } = \mu _ { 2 }
D) μ1<μ2\mu _ { 1 } < \mu _ { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions