Multiple Choice
In order to justify the construction of the angle-bisector of
, we verify that two triangles are congruent by which method?
A) SAS
B) ASA
C) SSS
D) HL
Correct Answer:

Verified
Correct Answer:
Verified
Q368: For any quadrilateral with perpendicular diagonals of
Q369: <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB7237/.jpg" alt=" -In the figure,
Q370: What expression represents the exact circumference of
Q371: <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB7237/.jpg" alt=" -For
Q372: <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB7237/.jpg" alt=" -A right pyramid
Q374: A diagonal of a parallelogram separates the
Q375: <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB7237/.jpg" alt=" -A right circular
Q376: In kite HJKL, HJ = HL and
Q377: Given that <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB7237/.jpg" alt="Given that
Q378: <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB7237/.jpg" alt=" -If m