Solved

Construct a Confidence Interval For μd\mu _ { \mathrm { d } }

Question 129

Multiple Choice

Construct a confidence interval for μd\mu _ { \mathrm { d } } , the mean of the differences d for the population of paired data. Assume that the
population of paired differences is normally distributed.
-When performing a hypothesis test for the ratio of two population variances, the upper critical F value is denoted FR\mathrm { F } _ { \mathrm { R } } . The lower critical Fvalue, FL\mathrm { F } _ { \text {value, } } \mathrm { F } _ { \mathrm { L } } , can be found as follows: interchange the degrees of freedom, and then take the reciprocal of the resulting F\mathrm { F } value found in table A5.FR\mathrm { A } - 5 . \mathrm { F } _ { \mathrm { R } } can be denoted Fα/2\mathrm { F } _ { \alpha / 2 } and FL\mathrm { F } _ { \mathrm { L } } can be denoted F1α/2\mathrm { F } _ { 1 } - \alpha / 2
Find the critical values FL\mathrm { F } _ { \mathrm { L } } and FR\mathrm { F } _ { \mathrm { R } } for a two-tailed hypothesis test based on the following values: n1=9,n2=7,α=0.05\mathrm { n } _ { 1 } = 9 , \mathrm { n } _ { 2 } = 7 , \alpha = 0.05


A) 0.3931,4.14680.3931,4.1468
B) 0.2150,4.82320.2150,4.8232
C) 0.2411,4.14680.2411,4.1468
D) 0.2150,5.59960.2150,5.5996

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions