Solved

Construct a Confidence Interval For μd\mu _ { \mathrm { d } }

Question 150

Multiple Choice

Construct a confidence interval for μd\mu _ { \mathrm { d } } , the mean of the differences d for the population of paired data. Assume that the
population of paired differences is normally distributed.
-A confidence interval estimate of the ratio σ21/σ2\sigma \frac { 2 } { 1 } / \sigma 2 can be found using the following expression:
(s12 s221 FR) <σ12σ22<(s12 s221 FL) \left(\frac{\mathrm{s}_{1}^{2}}{\mathrm{~s}_{2}^{2}} \cdot \frac{1}{\mathrm{~F}_{\mathrm{R}}}\right) <\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}<\left(\frac{\mathrm{s}_{1}^{2}}{\mathrm{~s}_{2}^{2}} \cdot \frac{1}{\mathrm{~F}_{\mathrm{L}}}\right) \text {, }

where FR\mathrm { F } _ { \mathrm { R } } is found in the standard way and FL\mathrm { F } _ { \mathrm { L } } is found as follows: interchange the degrees of freedom, and then take the reciprocal of the resulting F value found in table A-5.

A manager at a bank is interested in the standard deviation of the waiting times when a single waiting line is used and when individual lines are used. Obtain a 95%95 \% confidence interval for σ21/22\sigma \frac { 2 } { 1 } / { } _ { 2 } ^ { 2 } given the following sample data:
Sample 1: multiple waiting lines: n1=13, s1=2.1\mathrm { n } _ { 1 } = 13 , \mathrm {~s} _ { 1 } = 2.1 minutes
Sample 2: single waiting line: n2=16, s2=0.8\mathrm { n } _ { 2 } = 16 , \mathrm {~s} _ { 2 } = 0.8 minutes


A) 2.38<σ21/σ2<17.432.38 < \sigma \frac { 2 } { 1 } / \sigma 2 < 17.43
B) 2.78<σ21/σ22<18.052.78 < \sigma \frac { 2 } { 1 } / \sigma \frac { 2 } { 2 } < 18.05
C) 2.33<σ21/σ22<20.42.33 < \sigma \frac { 2 } { 1 } / \sigma \frac { 2 } { 2 } < 20.4
D) 2.33<σ21/σ22<21.912.33 < \sigma \frac { 2 } { 1 } / \sigma \frac { 2 } { 2 } < 21.91

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions