Multiple Choice
Solve the problem.
-A researcher is interested in estimating the proportion of voters who favor a tax on e-commerce. Based on a sample of 250 people, she obtains the following 99% confidence interval for the population proportion,
P: 0.113 < p < 0.171. Which of the statements below is a valid interpretation of this confidence interval?
A) If 100 different samples of size 250 were selected and, based on each sample, a confidence interval were constructed, exactly 99 of these confidence intervals would contain the true value of p.
B) If many different samples of size 250 were selected and, based on each sample, a confidence interval were constructed, in the long run 99% of the confidence intervals would contain the true value of p.
C) If many different samples of size 250 were selected and, based on each sample, a confidence interval were constructed, 99% of the time the true value of p would lie between 0.113 and 0.171.
D) There is a 99% chance that the true value of p lies between 0.113 and 0.171.
Correct Answer:

Verified
Correct Answer:
Verified
Q136: Use the given data to find
Q137: Use the given degree of confidence
Q138: Use the given degree of confidence
Q139: Do one of the following, as
Q140: Solve the problem.<br>-Find the critical value
Q142: Use the given data to find
Q143: Fill in the blank: The critical
Q144: Find the value of <span
Q145: Use the given information to find
Q146: Find the critical value <span