Solved

When Performing a Rank Correlation Test, One Alternative to Using rS=±t2t2+n2r _ { \mathrm { S } } = \pm \sqrt { \frac { t ^ { 2 } } { t ^ { 2 } + n - 2 } }

Question 72

Multiple Choice

When performing a rank correlation test, one alternative to using the Critical Values of Spearman's Rank Correlation Coefficient table to find critical values is to compute them using this approximation: rS=±t2t2+n2r _ { \mathrm { S } } = \pm \sqrt { \frac { t ^ { 2 } } { t ^ { 2 } + n - 2 } }
where tt is the t-score from the tt Distribution table corresponding to n2n - 2 degrees of freedom. Use this approximation to find critical values of rS\mathrm { r } _ { \mathrm { S } } for the case where n=17\mathrm { n } = 17 and α=0.05\alpha = 0.05 .


A) ±0.311\pm 0.311
B) ±0.480\pm 0.480
C) ±0.411\pm 0.411
D) ±0.482\pm 0.482

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions