Solved

For the Data Below, Determine the Logarithmic Equation y^=a+blnx\hat { y } = a + b \ln x

Question 79

Multiple Choice

For the data below, determine the logarithmic equation, y^=a+blnx\hat { y } = a + b \ln x that best fits the data. Hint: Begin by replacing each x-value with ln x then use the usual methods to find the equation of the least squares regression
Line. x1.22.74.46.69.5y1.64.78.99.512.0\begin{array}{c|ccccl}\mathrm{x} & 1.2 & 2.7 & 4.4 & 6.6 & 9.5 \\\hline \mathrm{y} & 1.6 & 4.7 & 8.9 & 9.5 & 12.0\end{array}


A) y^=0.457+5.06lnx\hat { y } = 0.457 + 5.06 \ln x
B) y^=0.458+5.36lnx\hat { y } = - 0.458 + 5.36 \ln x
C) y^=1.81+6.91lnx\hat { y } = - 1.81 + 6.91 \ln \mathrm { x }
D) y^=0.881+4.86lnx\hat { y } = 0.881 + 4.86 \ln \mathrm { x }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions