menu-iconExamlexExamLexServices

Discover

Ask a Question
  1. All Topics
  2. Topic
    Physics & Astronomy
  3. Study Set
    University Physics
  4. Exam
    Exam 2: Motion Along a Straight Line
  5. Question
    Scalar (Dot) Product: Determine the Scalar Product of =
Solved

Scalar (Dot) Product: Determine the Scalar Product of =

Question 37

Question 37

Multiple Choice

Scalar (dot) product: Determine the scalar product of Scalar (dot)  product: Determine the scalar product of   = 6.0   + 4.0   - 2.0   and   = 5.0   - 6.0   - 3.0   . A)  30   + 24   + 6   B)  30   - 24   + 6   C)  12 D)  60 E)  undefined = 6.0 Scalar (dot)  product: Determine the scalar product of   = 6.0   + 4.0   - 2.0   and   = 5.0   - 6.0   - 3.0   . A)  30   + 24   + 6   B)  30   - 24   + 6   C)  12 D)  60 E)  undefined + 4.0 Scalar (dot)  product: Determine the scalar product of   = 6.0   + 4.0   - 2.0   and   = 5.0   - 6.0   - 3.0   . A)  30   + 24   + 6   B)  30   - 24   + 6   C)  12 D)  60 E)  undefined - 2.0 Scalar (dot)  product: Determine the scalar product of   = 6.0   + 4.0   - 2.0   and   = 5.0   - 6.0   - 3.0   . A)  30   + 24   + 6   B)  30   - 24   + 6   C)  12 D)  60 E)  undefined and Scalar (dot)  product: Determine the scalar product of   = 6.0   + 4.0   - 2.0   and   = 5.0   - 6.0   - 3.0   . A)  30   + 24   + 6   B)  30   - 24   + 6   C)  12 D)  60 E)  undefined = 5.0 Scalar (dot)  product: Determine the scalar product of   = 6.0   + 4.0   - 2.0   and   = 5.0   - 6.0   - 3.0   . A)  30   + 24   + 6   B)  30   - 24   + 6   C)  12 D)  60 E)  undefined - 6.0 Scalar (dot)  product: Determine the scalar product of   = 6.0   + 4.0   - 2.0   and   = 5.0   - 6.0   - 3.0   . A)  30   + 24   + 6   B)  30   - 24   + 6   C)  12 D)  60 E)  undefined - 3.0 Scalar (dot)  product: Determine the scalar product of   = 6.0   + 4.0   - 2.0   and   = 5.0   - 6.0   - 3.0   . A)  30   + 24   + 6   B)  30   - 24   + 6   C)  12 D)  60 E)  undefined .


A) 30 Scalar (dot)  product: Determine the scalar product of   = 6.0   + 4.0   - 2.0   and   = 5.0   - 6.0   - 3.0   . A)  30   + 24   + 6   B)  30   - 24   + 6   C)  12 D)  60 E)  undefined + 24
Scalar (dot)  product: Determine the scalar product of   = 6.0   + 4.0   - 2.0   and   = 5.0   - 6.0   - 3.0   . A)  30   + 24   + 6   B)  30   - 24   + 6   C)  12 D)  60 E)  undefined + 6
Scalar (dot)  product: Determine the scalar product of   = 6.0   + 4.0   - 2.0   and   = 5.0   - 6.0   - 3.0   . A)  30   + 24   + 6   B)  30   - 24   + 6   C)  12 D)  60 E)  undefined
B) 30 Scalar (dot)  product: Determine the scalar product of   = 6.0   + 4.0   - 2.0   and   = 5.0   - 6.0   - 3.0   . A)  30   + 24   + 6   B)  30   - 24   + 6   C)  12 D)  60 E)  undefined - 24
Scalar (dot)  product: Determine the scalar product of   = 6.0   + 4.0   - 2.0   and   = 5.0   - 6.0   - 3.0   . A)  30   + 24   + 6   B)  30   - 24   + 6   C)  12 D)  60 E)  undefined + 6
Scalar (dot)  product: Determine the scalar product of   = 6.0   + 4.0   - 2.0   and   = 5.0   - 6.0   - 3.0   . A)  30   + 24   + 6   B)  30   - 24   + 6   C)  12 D)  60 E)  undefined
C) 12
D) 60
E) undefined

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Q32: Components: The magnitude of a vector can

Q33: Components: The components of vector <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB8274/.jpg"

Q34: Unit vectors: Vector <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB8274/.jpg" alt="Unit vectors:

Q35: Scalar (dot) product: The value of the

Q36: Unit vectors: If <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB8274/.jpg" alt="Unit vectors:

Q38: Scalar (dot) product: If two nonzero vectors

Q39: Components: As shown in the figure, three

Q40: Vector (cross) product: What is the vector

Q41: Components: Which of the following is an

Q42: Addition and subtraction: You walk 53 m

Examlex

ExamLex

About UsContact UsPerks CenterHomeschoolingTest Prep

Work With Us

Campus RepresentativeInfluencers

Links

FaqPricingChrome Extension

Download The App

Get App StoreGet Google Play

Policies

Privacy PolicyTerms of ServiceHonor CodeCommunity Guidelines

Scan To Download

qr-code

Copyright © (2025) ExamLex LLC.

Privacy PolicyTerms Of ServiceHonor CodeCommunity Guidelines