Solved

TABLE 10-13
the Amount of Time Required to Reach a Customer

Question 24

Multiple Choice

TABLE 10-13
The amount of time required to reach a customer service representative has a huge impact on customer satisfaction. Below is the Excel output from a study to see whether there is evidence of a difference in the mean amounts of time required to reach a customer service representative between two hotels. Assume that the population variances in the amount of time for the two hotels are not equal.
 t-Test: Two-Sample Assuming Unequal Variances  Hotel 1  Hotel 2  Mean 2.2142.0115 Variance 2.9516573.57855 Observations 2020 Hypothesized Mean Difference 0 df 38 t Stat 0.354386 P(T <=t)  one-tail 0.362504 t Critical one-tail 1.685953 P(T<=t)  two-tail 0.725009 t Critical two-tail 2.024394\begin{array}{l}\text { t-Test: Two-Sample Assuming Unequal Variances }\\\begin{array} { l r r } \hline & \text { Hotel 1 } &{ \text { Hotel 2 } } \\\hline \text { Mean } & 2.214 & 2.0115 \\\hline \text { Variance } & 2.951657 & 3.57855 \\\text { Observations } & 20 & 20 \\\hline \text { Hypothesized Mean Difference } & 0 & \\\hline \text { df } & 38 & \\\hline \text { t Stat } & 0.354386 & \\\hline \text { P(T <=t) one-tail } & 0.362504 & \\\text { t Critical one-tail } & 1.685953 & \\\hline \text { P(T<=t) two-tail } & 0.725009 & \\\text { t Critical two-tail } & 2.024394 & \\\hline\end{array}\end{array}
-Referring to Table 10-13, state the null and alternative hypotheses for testing if there is evidence of a difference in the variabilities of the amount of time required to reach a customer service representative between the two hotels.


A) H0:σI2σII20 H_{0}: \sigma_{I}^{2}-\sigma_{I I}^{2} \geq 0 versus H1:σI2σII2<0 H_{1}: \sigma_{I}^{2}-\sigma_{I I}^{2}<0
B) H0:σI2σII20 H_{0}: \sigma_{I}^{2}-\sigma_{I I}^{2} \leq 0 versus H1:σI2σII2>0 H_{1}: \sigma_{I}^{2}-\sigma_{I I}^{2}>0
C) H0:σI2σII2=0 H_{0}: \sigma_{I}^{2}-\sigma_{I I}^{2}=0 versus H1:σI2σII20 H_{1}: \sigma_{I}^{2}-\sigma_{I I}^{2} \neq 0
D) H0:σI2σII20 H_{0}: \sigma_{I}^{2}-\sigma_{I I}^{2} \neq 0 versus H1:σI2σII2=0 H_{1}: \sigma_{I}^{2}-\sigma_{I I}^{2}=0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions