Solved

Use the Data Given Below to Answer the Following Question(s) p^π0π(1π0)/n\frac { \hat{p} - \pi _0 } { \pi ( 1 - \pi_ 0 ) / n }

Question 31

Multiple Choice

Use the data given below to answer the following question(s) .
In a lower one-tailed hypothesis test, chosen level of significance = 0.10, true mean = 30, sample size = 55, and t-test statistic = -1.76.
-Which of the following computes the test statistic for a one-sample test for proportions?


A) z = p^π0π(1π0) /n\frac { \hat{p} - \pi _0 } { \pi ( 1 - \pi_ 0 ) / n }

B) z = p^π0π/n\frac { \hat{p} - \pi _0 } { \pi / n }

C) z = p^π0π(1π0) /n\frac { \hat{p} - \pi _ { 0 } } { \sqrt { \pi \left( 1 - \pi _ { 0 } \right) / n } }

D) z = p^π0π(1π0) 2/n\frac{\hat{p}-\pi _0}{\sqrt{\pi(1-\pi_ 0) ^{2} / n}}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions