Solved

The Actual Value of the Time Series at Time T t=1nAt+Ft2n\frac { \sum _ { t = 1 } ^ { n } \left| \frac { A _ { t } + F _ { t } } { 2 } \right| } { n }

Question 8

Multiple Choice

The actual value of the time series at time t and the forecast value for time t is denoted by At and Ft respectively.What is the formula used for calculating the mean absolute percentage error over a range of forecasted values?


A) MAPE = t=1nAt+Ft2n\frac { \sum _ { t = 1 } ^ { n } \left| \frac { A _ { t } + F _ { t } } { 2 } \right| } { n }

B) MAPE = t=1nAt+Ft2n\sqrt { \frac { \sum _ { t = 1 } ^ { n } \left| \frac { A _ { t } + F _ { t } } { 2 } \right| } { n } }

C) MAPE = t=1nAtFtn\frac { \sum _ { t = 1 } ^ { n } \left| A _ { t } - F _ { t } \right| } { n }

D) MAPE = t=1nAt+FtAtn\frac { \sum _ { t = 1 } ^ { n } \left| \frac { A _ { t } + F _ { t } } { A _ { t } } \right| } { n } × 100

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions