Solved

Solve the Problem 149 km149 \mathrm {~km} Determine an Equation for the Ellipse If the Distance

Question 164

Multiple Choice

Solve the problem.
-A satellite is to be put into an elliptical orbit around a moon. The moon is a sphere with radius of 149 km149 \mathrm {~km} . Determine an equation for the ellipse if the distance of the satellite from the surface of the moon varies from 910 km\mathrm { km } to 488 km488 \mathrm {~km} .
 Solve the problem. -A satellite is to be put into an elliptical orbit around a moon. The moon is a sphere with radius of  149 \mathrm {~km} . Determine an equation for the ellipse if the distance of the satellite from the surface of the moon varies from 910  \mathrm { km }  to  488 \mathrm {~km} .    A)   \frac { x ^ { 2 } } { 10592 } + \frac { y ^ { 2 } } { 637 ^ { 2 } } = 1  B)   \frac { x ^ { 2 } } { 488 } + \frac { y ^ { 2 } } { 910 } = 1  C)   \frac { x ^ { 2 } } { 637 ^ { 2 } } + \frac { y ^ { 2 } } { 10592 } = 1  D)   \frac { x ^ { 2 } } { 910 } + \frac { y ^ { 2 } } { 488 } = 1


A) x210592+y26372=1\frac { x ^ { 2 } } { 10592 } + \frac { y ^ { 2 } } { 637 ^ { 2 } } = 1
B) x2488+y2910=1\frac { x ^ { 2 } } { 488 } + \frac { y ^ { 2 } } { 910 } = 1
C) x26372+y210592=1\frac { x ^ { 2 } } { 637 ^ { 2 } } + \frac { y ^ { 2 } } { 10592 } = 1
D) x2910+y2488=1\frac { x ^ { 2 } } { 910 } + \frac { y ^ { 2 } } { 488 } = 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions