Solved

Solve the System of Equations by Finding the Reduced Row x+y2z=8x + y - 2 z = 8

Question 135

Multiple Choice

Solve the system of equations by finding the reduced row echelon form for the augmented matrix.
- x+y2z=8x + y - 2 z = 8 3x+z=63 x + z = - 6


A) (13z2,73z+10,z) \left( \frac { 1 } { 3 } z - 2 , - \frac { 7 } { 3 } z + 10 , z \right)
B) (2z+13,10z73,z) \left( - 2 z + \frac { 1 } { 3 } , 10 z - \frac { 7 } { 3 } , z \right)
C) (13z2,73z+10,z) \left( - \frac { 1 } { 3 } z - 2 , \frac { 7 } { 3 } z + 10 , z \right)
D) (13z+2,73z10,z) \left( \frac { 1 } { 3 } z + 2 , - \frac { 7 } { 3 } z - 10 , z \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions