Solved

Solve the Problem Using a Graphing Calculator (0,13)( 0,13 ) On a Rectangular Coordinate System

Question 6

Multiple Choice

Solve the problem using a graphing calculator.
-A Ferris wheel with a radius of 36 feet turns clockwise at the rate of one revolution every 12 sec. The lowest point of the Ferris wheel is 13 feet above ground level at the point (0,13) ( 0,13 ) on a rectangular coordinate system. Find parametric equations for the position of a person on the Ferris wheel as a function of time (in seconds) if the Ferris wheel starts (t=0) ( t = 0 ) with the person at the point (36,49) ( 36,49 ) .


A) x=36cos(30t) ft,y=36sin(30t) +13ftx = 36 \cos ( 30 t ) ^ { \circ } \mathrm { ft } , y = 36 \sin ( 30 \mathrm { t } ) ^ { \circ } + 13 \mathrm { ft }
B) x=36cos(12t) ft,y=36sin(12t) +13ftx = 36 \cos ( 12 t ) ^ { \circ } \mathrm { ft } , y = 36 \sin ( 12 \mathrm { t } ) ^ { \circ } + 13 \mathrm { ft }
C) x=36sin(30t) ft,y=36cos(30t) +49ftx = 36 \sin ( 30 t ) ^ { \circ } \mathrm { ft } , y = 36 \cos ( 30 t ) ^ { \circ } + 49 \mathrm { ft }
D) x=36cos(30t) ft,y=36sin(30t) +49ftx = 36 \cos ( 30 t ) ^ { \circ } \mathrm { ft } , y = 36 \sin ( 30 t ) ^ { \circ } + 49 \mathrm { ft }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions