Solved

Let z1=r1(cosθ1+isinθ1)\mathrm { z } _ { 1 } = \mathrm { r } _ { 1 } \left( \cos \theta _ { 1 } + \mathrm { i } \sin \theta _ { 1 } \right)

Question 120

Essay

Let z1=r1(cosθ1+isinθ1)\mathrm { z } _ { 1 } = \mathrm { r } _ { 1 } \left( \cos \theta _ { 1 } + \mathrm { i } \sin \theta _ { 1 } \right) and z2=r2(cosθ2+isinθ2),r20\mathrm { z } _ { 2 } = \mathrm { r } _ { 2 } \left( \cos \theta _ { 2 } + \mathrm { i } \sin \theta _ { 2 } \right) , \mathrm { r } _ { 2 } \neq 0 . Verify that z1/z2=r1/r2[cos(θ1θ2)+isin(θ1θ2)]\mathrm { z } _ { 1 } / \mathrm { z } _ { 2 } = \mathrm { r } _ { 1 } / \mathrm { r } _ { 2 } \left[ \cos \left( \theta _ { 1 } - \theta _ { 2 } \right) + \mathrm { i } \sin \left( \theta _ { 1 } - \theta _ { 2 } \right) \right] .

Correct Answer:

verifed

Verified

\[\begin{array} { l }
\mathrm { z } _ {...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions