Solved

Find All Solutions to the Equation sin2x+sinx=0\sin ^ { 2 } x + \sin x = 0

Question 13

Multiple Choice

Find all solutions to the equation.
- sin2x+sinx=0\sin ^ { 2 } x + \sin x = 0


A) {nπ,π2+2nπn=0,±1,±2,.}\left\{ n \pi , \frac { \pi } { 2 } + 2 n \pi \mid n = 0 , \pm 1 , \pm 2 , \ldots . \right\}
B) {2nπ,3π2+2nπn=0,±1,±2,.}\left\{ 2 n \pi , \frac { 3 \pi } { 2 } + 2 n \pi \mid n = 0 , \pm 1 , \pm 2 , \ldots . \right\}
C) {π3+2nπ,2π3+2nπn=0,±1,±2,..\left\{ \frac { \pi } { 3 } + 2 n \pi , \frac { 2 \pi } { 3 } + 2 n \pi \mid n = 0 , \pm 1 , \pm 2 , \ldots . . \right.
D) {nπ,3π2+2nπn=0,±1,±2,.}\left\{ \mathrm { n } \pi , \frac { 3 \pi } { 2 } + 2 \mathrm { n } \pi \mid \mathrm { n } = 0 , \pm 1 , \pm 2 , \ldots . \right\}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions