Solved

Find All Solutions to the Equation 4sin2x4sinx+1=04 \sin ^ { 2 } x - 4 \sin x + 1 = 0

Question 34

Multiple Choice

Find all solutions to the equation.
- 4sin2x4sinx+1=04 \sin ^ { 2 } x - 4 \sin x + 1 = 0


A) {π6+2nπ,7π6+2nπn=0,±1,±2,}\left\{ \frac { \pi } { 6 } + 2 \mathrm { n } \pi , \frac { 7 \pi } { 6 } + 2 \mathrm { n } \pi \mid \mathrm { n } = 0 , \pm 1 , \pm 2 , \ldots \right\}
B) {π6+2nπ,5π6+2nπn=0,±1,±2,}\left\{ \frac { \pi } { 6 } + 2 \mathrm { n } \pi , \frac { 5 \pi } { 6 } + 2 \mathrm { n } \pi \mid \mathrm { n } = 0 , \pm 1 , \pm 2 , \ldots \right\}
C) {π3+2nπ,5π3+2nπn=0,±1,±2,.}\left\{ \frac { \pi } { 3 } + 2 \mathrm { n } \pi , \frac { 5 \pi } { 3 } + 2 \mathrm { n } \pi \mid \mathrm { n } = 0 , \pm 1 , \pm 2 , \ldots . \right\}
D) {π6+2nπ,11π6+2nπn=0,±1,±2,.}\left\{ \frac { \pi } { 6 } + 2 \mathrm { n } \pi , \frac { 11 \pi } { 6 } + 2 \mathrm { n } \pi \mid \mathrm { n } = 0 , \pm 1 , \pm 2 , \ldots . \right\}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions