menu-iconExamlexExamLexServices

Discover

Ask a Question
  1. All Topics
  2. Topic
    Mathematics
  3. Study Set
    Precalculus Graphical Numerical Algebraic
  4. Exam
    Exam 5: Analytic Trigonometry
  5. Question
    Prove the Identity\[\frac { \cot ^ { 2 } x } { \csc x + 1 } = \frac { 1 - \sin x } { \sin x }\]
Solved

Prove the Identity cot⁡2xcsc⁡x+1=1−sin⁡xsin⁡x\frac { \cot ^ { 2 } x } { \csc x + 1 } = \frac { 1 - \sin x } { \sin x }cscx+1cot2x​=sinx1−sinx​

Question 79

Question 79

Essay

Prove the identity.
- cot⁡2xcsc⁡x+1=1−sin⁡xsin⁡x\frac { \cot ^ { 2 } x } { \csc x + 1 } = \frac { 1 - \sin x } { \sin x }cscx+1cot2x​=sinx1−sinx​

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Q74: Provide an appropriate response.<br>-Graph the expression

Q75: The given measurements may or may

Q76: Find all solutions to the equation.<br>-

Q77: Simplify the expression to either 1

Q78: Use basic identities to simplify the

Q80: State whether the given measurements determine

Q81: Write each expression in factored form

Q82: Prove the identity.<br>- <span class="ql-formula" data-value="\frac

Q83: Provide an appropriate response.<br>-Discuss the methods used

Q84: State whether the given measurements determine

Examlex

ExamLex

About UsContact UsPerks CenterHomeschoolingTest Prep

Work With Us

Campus RepresentativeInfluencers

Links

FaqPricingChrome Extension

Download The App

Get App StoreGet Google Play

Policies

Privacy PolicyTerms of ServiceHonor CodeCommunity Guidelines

Scan To Download

qr-code

Copyright © (2025) ExamLex LLC.

Privacy PolicyTerms Of ServiceHonor CodeCommunity Guidelines