menu-iconExamlexExamLexServices

Discover

Ask a Question
  1. All Topics
  2. Topic
    Mathematics
  3. Study Set
    Precalculus Graphical Numerical Algebraic
  4. Exam
    Exam 5: Analytic Trigonometry
  5. Question
    Prove the Identity\[\csc ^ { 3 } x \tan ^ { 2 } x = \csc x \left( 1 + \tan ^ { 2 } x \right)\]
Solved

Prove the Identity csc⁡3xtan⁡2x=csc⁡x(1+tan⁡2x)\csc ^ { 3 } x \tan ^ { 2 } x = \csc x \left( 1 + \tan ^ { 2 } x \right)csc3xtan2x=cscx(1+tan2x)

Question 110

Question 110

Essay

Prove the identity.
- csc⁡3xtan⁡2x=csc⁡x(1+tan⁡2x)\csc ^ { 3 } x \tan ^ { 2 } x = \csc x \left( 1 + \tan ^ { 2 } x \right)csc3xtan2x=cscx(1+tan2x)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Q105: Solve the triangle.<br>- <span class="ql-formula" data-value="\mathrm

Q106: Find the area. Round your answer

Q107: Simplify the expression.<br>- <span class="ql-formula" data-value="\cot

Q108: Prove the identity.<br>- <span class="ql-formula" data-value="\tan

Q109: Simplify the expression to either 1

Q111: Find an exact value.<br>- <span class="ql-formula"

Q112: Prove the identity.<br>-4 cot 4x = 2

Q113: State whether the given measurements determine

Q114: Prove the identity.<br>- <span class="ql-formula" data-value="\cos

Q115: Match the graph with the correct equation.<br>-<img

Examlex

ExamLex

About UsContact UsPerks CenterHomeschoolingTest Prep

Work With Us

Campus RepresentativeInfluencers

Links

FaqPricingChrome Extension

Download The App

Get App StoreGet Google Play

Policies

Privacy PolicyTerms of ServiceHonor CodeCommunity Guidelines

Scan To Download

qr-code

Copyright © (2025) ExamLex LLC.

Privacy PolicyTerms Of ServiceHonor CodeCommunity Guidelines