Solved

Solve the Problem 1900.1900 . A) P(t)=11.6791+13.251e0.0116t\mathrm { P } ( \mathrm { t } ) = \frac { 11.679 } { 1 + 13.251 \mathrm { e } ^ { - 0.0116 \mathrm { t } } }

Question 121

Multiple Choice

Solve the problem.
-Use the data in the table to compute a logistic regression model for the population of the city t years after 1900.1900 .
 Solve the problem. -Use the data in the table to compute a logistic regression model for the population of the city t years after  1900 .     A)   \mathrm { P } ( \mathrm { t } )  = \frac { 11.679 } { 1 + 13.251 \mathrm { e } ^ { - 0.0116 \mathrm { t } } }   B)   \mathrm { P } ( \mathrm { t } )  = \frac { 10.279 } { 1 + 9.053 \mathrm { e } ^ { - 0.0273 \mathrm { t } } }   C)   \mathrm { P } ( \mathrm { t } )  = \frac { 8.731 } { 1 + 7.663 \mathrm { e } ^ { - 0.0362 \mathrm { t } } }   D)   \mathrm { P } ( \mathrm { t } )  = \frac { 9.053 } { 1 + 10.279 \mathrm { e } ^ { - 0.0273 \mathrm { t } } }


A) P(t) =11.6791+13.251e0.0116t\mathrm { P } ( \mathrm { t } ) = \frac { 11.679 } { 1 + 13.251 \mathrm { e } ^ { - 0.0116 \mathrm { t } } }

B) P(t) =10.2791+9.053e0.0273t\mathrm { P } ( \mathrm { t } ) = \frac { 10.279 } { 1 + 9.053 \mathrm { e } ^ { - 0.0273 \mathrm { t } } }

C) P(t) =8.7311+7.663e0.0362t\mathrm { P } ( \mathrm { t } ) = \frac { 8.731 } { 1 + 7.663 \mathrm { e } ^ { - 0.0362 \mathrm { t } } }

D) P(t) =9.0531+10.279e0.0273t\mathrm { P } ( \mathrm { t } ) = \frac { 9.053 } { 1 + 10.279 \mathrm { e } ^ { - 0.0273 \mathrm { t } } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions