Solved

Use Limits to Describe the Behavior of the Rational Function f(x)=x+1x22xf ( x ) = \frac { x + 1 } { x ^ { 2 } - 2 x }

Question 168

Multiple Choice

Use limits to describe the behavior of the rational function near the indicated asymptote.
- f(x) =x+1x22xf ( x ) = \frac { x + 1 } { x ^ { 2 } - 2 x }
Describe the behavior of the function near its vertical asymptotes.


A) limxθf(x) =,limxθ+f(x) =,limx2f(x) =,limx2+f(x) =\lim _ { x \rightarrow \theta ^ { - } } f ( x ) = \infty , \lim _ { x \rightarrow \theta ^ { + } } f ( x ) = - \infty , \lim _ { x \rightarrow 2 ^ { - } } f ( x ) = \infty , \lim _ { x \rightarrow 2 ^ { + } } f ( x ) = - \infty
B) lim xθf(x) =0,limxθ+f(x) =,limx2f(x) =,limx2+f(x) =\operatorname { lim~ } _ { x \rightarrow \theta ^ { - } } f ( x ) = 0 , \lim _ { x \rightarrow \theta ^ { + } } f ( x ) = - \infty , \lim _ { x \rightarrow 2 ^ { - } } f ( x ) = - \infty , \quad \lim _ { x \rightarrow 2 ^ { + } } f ( x ) = \infty
C) limxθf(x) =,limxθ+f(x) =,limx2f(x) =,limx2+f(x) =\lim _ { x \rightarrow \theta ^ { - } } f ( x ) = \infty , \lim _ { x \rightarrow \theta ^ { + } } f ( x ) = - \infty , \lim _ { x \rightarrow 2 ^ { - } } f ( x ) = - \infty , \lim _ { x \rightarrow 2 ^ { + } } f ( x ) = \infty
D) limxθf(x) =,limxθ+f(x) =,limxZf(x) =,limx2+f(x) =\lim _ { x \rightarrow \theta ^ { - } } f ( x ) = - \infty , \lim _ { x \rightarrow \theta ^ { + } } f ( x ) = \infty , \lim _ { x \rightarrow \mathbb { Z } ^ { - } } f ( x ) = - \infty , \lim _ { x \rightarrow 2 ^ { + } } f ( x ) = \infty

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions