Solved

Use Limits to Describe the Behavior of the Rational Function f(x)=4x23x2+1f ( x ) = \frac { 4 x ^ { 2 } - 3 } { x ^ { 2 } + 1 }

Question 175

Multiple Choice

Use limits to describe the behavior of the rational function near the indicated asymptote.
- f(x) =4x23x2+1f ( x ) = \frac { 4 x ^ { 2 } - 3 } { x ^ { 2 } + 1 }
Describe the behavior of the function near its horizontal asymptote (the end behavior) .


A) limxf(x) =0,limxf(x) =0\lim _ { x \rightarrow \infty } f ( x ) = 0 , \lim _ { x \rightarrow \infty } f ( x ) = 0
B) limxf(x) =4,limxf(x) =4\lim _ { x \rightarrow \infty } f ( x ) = 4 , \lim _ { x \rightarrow \infty } f ( x ) = 4
C)
 Use limits to describe the behavior of the rational function near the indicated asymptote. - f ( x )  = \frac { 4 x ^ { 2 } - 3 } { x ^ { 2 } + 1 }  Describe the behavior of the function near its horizontal asymptote (the end behavior) . A)   \lim _ { x \rightarrow \infty } f ( x )  = 0 , \lim _ { x \rightarrow \infty } f ( x )  = 0  B)   \lim _ { x \rightarrow \infty } f ( x )  = 4 , \lim _ { x \rightarrow \infty } f ( x )  = 4  C)     D)   \lim _ { x \rightarrow 1 ^ { - } } f ( x )  = \infty , \lim _ { x \rightarrow 1 ^ { + } } f ( x )  = \infty

D) limx1f(x) =,limx1+f(x) =\lim _ { x \rightarrow 1 ^ { - } } f ( x ) = \infty , \lim _ { x \rightarrow 1 ^ { + } } f ( x ) = \infty

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions