Solved

Solve the Problem N(t)=0.5t+10006t+5,t8N ( t ) = \frac { 0.5 t + 1000 } { 6 t + 5 } , t \geq 8

Question 402

Multiple Choice

Solve the problem.
-The function N(t) =0.5t+10006t+5,t8N ( t ) = \frac { 0.5 t + 1000 } { 6 t + 5 } , t \geq 8
gives the body concentration N(t) \mathrm { N } ( \mathrm { t } ) , in parts per million, of a certain dosage of medication after time tt , in hours.
Graph the function on the interval [8,) [ 8 , \infty ) and complete the following:
N(t) \mathrm { N } ( \mathrm { t } ) \rightarrow \quad as tx\mathrm { t } \rightarrow \mathrm { x } _ { \text {. } }


A)
 Solve the problem. -The function  N ( t )  = \frac { 0.5 t + 1000 } { 6 t + 5 } , t \geq 8  gives the body concentration  \mathrm { N } ( \mathrm { t } )  , in parts per million, of a certain dosage of medication after time  t , in hours. Graph the function on the interval  [ 8 , \infty )   and complete the following:  \mathrm { N } ( \mathrm { t } )  \rightarrow \quad  as  \mathrm { t } \rightarrow \mathrm { x } _ { \text {. } }   A)     \mathrm { N } ( \mathrm { t } )  \rightarrow 0  as  \mathrm { t } \rightarrow \infty    B)     \mathrm { N } ( \mathrm { t } )  \rightarrow 0.083  as  \mathrm { t } \rightarrow \infty .  C)     \mathrm { N } ( \mathrm { t } )  \rightarrow 1  as  \mathrm { t } \rightarrow\infty    D)     \mathrm { N } ( \mathrm { t } )  \rightarrow 0.071  as  \mathrm { t } \rightarrow \infty ,
N(t) 0\mathrm { N } ( \mathrm { t } ) \rightarrow 0 as t\mathrm { t } \rightarrow \infty
B)
 Solve the problem. -The function  N ( t )  = \frac { 0.5 t + 1000 } { 6 t + 5 } , t \geq 8  gives the body concentration  \mathrm { N } ( \mathrm { t } )  , in parts per million, of a certain dosage of medication after time  t , in hours. Graph the function on the interval  [ 8 , \infty )   and complete the following:  \mathrm { N } ( \mathrm { t } )  \rightarrow \quad  as  \mathrm { t } \rightarrow \mathrm { x } _ { \text {. } }   A)     \mathrm { N } ( \mathrm { t } )  \rightarrow 0  as  \mathrm { t } \rightarrow \infty    B)     \mathrm { N } ( \mathrm { t } )  \rightarrow 0.083  as  \mathrm { t } \rightarrow \infty .  C)     \mathrm { N } ( \mathrm { t } )  \rightarrow 1  as  \mathrm { t } \rightarrow\infty    D)     \mathrm { N } ( \mathrm { t } )  \rightarrow 0.071  as  \mathrm { t } \rightarrow \infty ,
N(t) 0.083\mathrm { N } ( \mathrm { t } ) \rightarrow 0.083 as t.\mathrm { t } \rightarrow \infty .
C)
 Solve the problem. -The function  N ( t )  = \frac { 0.5 t + 1000 } { 6 t + 5 } , t \geq 8  gives the body concentration  \mathrm { N } ( \mathrm { t } )  , in parts per million, of a certain dosage of medication after time  t , in hours. Graph the function on the interval  [ 8 , \infty )   and complete the following:  \mathrm { N } ( \mathrm { t } )  \rightarrow \quad  as  \mathrm { t } \rightarrow \mathrm { x } _ { \text {. } }   A)     \mathrm { N } ( \mathrm { t } )  \rightarrow 0  as  \mathrm { t } \rightarrow \infty    B)     \mathrm { N } ( \mathrm { t } )  \rightarrow 0.083  as  \mathrm { t } \rightarrow \infty .  C)     \mathrm { N } ( \mathrm { t } )  \rightarrow 1  as  \mathrm { t } \rightarrow\infty    D)     \mathrm { N } ( \mathrm { t } )  \rightarrow 0.071  as  \mathrm { t } \rightarrow \infty ,
N(t) 1\mathrm { N } ( \mathrm { t } ) \rightarrow 1 as t\mathrm { t } \rightarrow\infty
D)
 Solve the problem. -The function  N ( t )  = \frac { 0.5 t + 1000 } { 6 t + 5 } , t \geq 8  gives the body concentration  \mathrm { N } ( \mathrm { t } )  , in parts per million, of a certain dosage of medication after time  t , in hours. Graph the function on the interval  [ 8 , \infty )   and complete the following:  \mathrm { N } ( \mathrm { t } )  \rightarrow \quad  as  \mathrm { t } \rightarrow \mathrm { x } _ { \text {. } }   A)     \mathrm { N } ( \mathrm { t } )  \rightarrow 0  as  \mathrm { t } \rightarrow \infty    B)     \mathrm { N } ( \mathrm { t } )  \rightarrow 0.083  as  \mathrm { t } \rightarrow \infty .  C)     \mathrm { N } ( \mathrm { t } )  \rightarrow 1  as  \mathrm { t } \rightarrow\infty    D)     \mathrm { N } ( \mathrm { t } )  \rightarrow 0.071  as  \mathrm { t } \rightarrow \infty ,
N(t) 0.071\mathrm { N } ( \mathrm { t } ) \rightarrow 0.071 as t\mathrm { t } \rightarrow \infty ,

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions