Solved

Solve the Problem P\mathrm { P } , in Thousands, of Jonesburg Is Given By

Question 258

Multiple Choice

Solve the problem.
-The population P\mathrm { P } , in thousands, of Jonesburg is given by
P(t) =500t2t2+8P ( t ) = \frac { 500 t } { 2 t ^ { 2 } + 8 }
where tt is the time, in months.
Graph the function on the interval [0,) [ 0 , \infty ) and complete the following: P(t) \mathrm { P } ( \mathrm { t } ) \rightarrow \quad as t\mathrm { t } \rightarrow \infty


A)
 Solve the problem. -The population  \mathrm { P } , in thousands, of Jonesburg is given by  P ( t )  = \frac { 500 t } { 2 t ^ { 2 } + 8 }  where  t  is the time, in months. Graph the function on the interval  [ 0 , \infty )   and complete the following:  \mathrm { P } ( \mathrm { t } )  \rightarrow \quad  as  \mathrm { t } \rightarrow \infty   A)     \mathrm { P } ( \mathrm { t } )  \rightarrow 50  as  t \rightarrow \infty .  B)      \mathrm { P } ( \mathrm { t } )  \rightarrow 1  as  t \rightarrow \infty .  C)     \mathrm { P } ( \mathrm { t } )  \rightarrow 0  as  \mathrm { t } \rightarrow \infty   D)     P ( t )  \rightarrow 45  as  t \rightarrow \infty .
P(t) 50\mathrm { P } ( \mathrm { t } ) \rightarrow 50 as tt \rightarrow \infty .

B)
 Solve the problem. -The population  \mathrm { P } , in thousands, of Jonesburg is given by  P ( t )  = \frac { 500 t } { 2 t ^ { 2 } + 8 }  where  t  is the time, in months. Graph the function on the interval  [ 0 , \infty )   and complete the following:  \mathrm { P } ( \mathrm { t } )  \rightarrow \quad  as  \mathrm { t } \rightarrow \infty   A)     \mathrm { P } ( \mathrm { t } )  \rightarrow 50  as  t \rightarrow \infty .  B)      \mathrm { P } ( \mathrm { t } )  \rightarrow 1  as  t \rightarrow \infty .  C)     \mathrm { P } ( \mathrm { t } )  \rightarrow 0  as  \mathrm { t } \rightarrow \infty   D)     P ( t )  \rightarrow 45  as  t \rightarrow \infty .

P(t) 1\mathrm { P } ( \mathrm { t } ) \rightarrow 1 as t.t \rightarrow \infty .
C)
 Solve the problem. -The population  \mathrm { P } , in thousands, of Jonesburg is given by  P ( t )  = \frac { 500 t } { 2 t ^ { 2 } + 8 }  where  t  is the time, in months. Graph the function on the interval  [ 0 , \infty )   and complete the following:  \mathrm { P } ( \mathrm { t } )  \rightarrow \quad  as  \mathrm { t } \rightarrow \infty   A)     \mathrm { P } ( \mathrm { t } )  \rightarrow 50  as  t \rightarrow \infty .  B)      \mathrm { P } ( \mathrm { t } )  \rightarrow 1  as  t \rightarrow \infty .  C)     \mathrm { P } ( \mathrm { t } )  \rightarrow 0  as  \mathrm { t } \rightarrow \infty   D)     P ( t )  \rightarrow 45  as  t \rightarrow \infty .
P(t) 0\mathrm { P } ( \mathrm { t } ) \rightarrow 0 as t\mathrm { t } \rightarrow \infty
D)
 Solve the problem. -The population  \mathrm { P } , in thousands, of Jonesburg is given by  P ( t )  = \frac { 500 t } { 2 t ^ { 2 } + 8 }  where  t  is the time, in months. Graph the function on the interval  [ 0 , \infty )   and complete the following:  \mathrm { P } ( \mathrm { t } )  \rightarrow \quad  as  \mathrm { t } \rightarrow \infty   A)     \mathrm { P } ( \mathrm { t } )  \rightarrow 50  as  t \rightarrow \infty .  B)      \mathrm { P } ( \mathrm { t } )  \rightarrow 1  as  t \rightarrow \infty .  C)     \mathrm { P } ( \mathrm { t } )  \rightarrow 0  as  \mathrm { t } \rightarrow \infty   D)     P ( t )  \rightarrow 45  as  t \rightarrow \infty .
P(t) 45P ( t ) \rightarrow 45 as tt \rightarrow \infty .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions