Solved

Solve the Problem 256 cm2256 \mathrm {~cm} ^ { 2 } Let

Question 123

Multiple Choice

Solve the problem.
-Consider all rectangles with an area of 256 cm2256 \mathrm {~cm} ^ { 2 } . Let xx be the length of one side of such a rectangle. Express the perimeter as a function of xx and determine the dimensions of the rectangle that has the least perimeter.


A) P(x) =2x+512x;4 cm×64 cm\mathrm { P } ( \mathrm { x } ) = 2 \mathrm { x } + \frac { 512 } { \mathrm { x } } ; 4 \mathrm {~cm} \times 64 \mathrm {~cm}
B) P(x) =x+256x;16 cm×16 cm\mathrm { P } ( \mathrm { x } ) = \mathrm { x } + \frac { 256 } { \mathrm { x } } ; 16 \mathrm {~cm} \times 16 \mathrm {~cm}
C) P(x) =256x;8 cm×32 cm\mathrm { P } ( \mathrm { x } ) = 256 \mathrm { x } ; 8 \mathrm {~cm} \times 32 \mathrm {~cm}
D) P(x) =2x+512x;16 cm×16 cm\mathrm { P } ( \mathrm { x } ) = 2 \mathrm { x } + \frac { 512 } { \mathrm { x } } ; 16 \mathrm {~cm} \times 16 \mathrm {~cm}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions