Solved

Determine the X Values That Cause the Function to Be f(x)=(x2)(2x+1)(x3)f ( x ) = \frac { ( x - 2 ) } { ( 2 x + 1 ) ( x - 3 ) }

Question 482

Multiple Choice

Determine the x values that cause the function to be (a) zero, (b) undefined, (c) positive, and (d) negative.
- f(x) =(x2) (2x+1) (x3) f ( x ) = \frac { ( x - 2 ) } { ( 2 x + 1 ) ( x - 3 ) }


A) (a) {2,3,12} \left\{2,3,-\frac{1}{2}\right\} (b) \varnothing , (c) (,12) (2,3) \left(-\infty,-\frac{1}{2}\right) \cup(2,3) , (d) (12,2) (3,) \left(-\frac{1}{2}, 2\right) \cup(3, \infty)
B) (a) {3} \{3\} , (b) {3,12} \left\{3,-\frac{1}{2}\right\} , (c) (,12) (2,3) ,(d) (12,2) (3,) \left(-\infty,-\frac{1}{2}\right) \cup(2,3) ,(\mathrm{d}) \left(-\frac{1}{2}, 2\right) \cup(3, \infty)
C) (a) {2,3} \{2,3\} , (b) {12} \left\{-\frac{1}{2}\right\} (c) {12,2) (3,) ,(d) (,12) (2,3) \left\{-\frac{1}{2}, 2\right) \cup(3, \infty) ,(\mathrm{d}) \left(-\infty,-\frac{1}{2}\right) \cup(2,3)
D) (a) {2} \{2\} , (b) {3,12} \left\{3,-\frac{1}{2}\right\} , (c) {12,2) (3,) ,(d) (,12) (2,3) \left\{-\frac{1}{2}, 2\right) \cup(3, \infty) ,(d) \left(-\infty,-\frac{1}{2}\right) \cup(2,3)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions