Solved

Determine the X Values That Cause the Function to Be f(x)=(2x9)(x+3)x+4f ( x ) = \frac { ( 2 x - 9 ) ( x + 3 ) } { x + 4 }

Question 287

Multiple Choice

Determine the x values that cause the function to be (a) zero, (b) undefined, (c) positive, and (d) negative.
- f(x) =(2x9) (x+3) x+4f ( x ) = \frac { ( 2 x - 9 ) ( x + 3 ) } { x + 4 }


A) (a) {3,92}\left\{ - 3 , \frac { 9 } { 2 } \right\} (b) {4}\{ - 4 \} , (c) (,4) (3,92) ( \infty , - 4 ) \cup \left( - 3 , \frac { 9 } { 2 } \right) , (d) (4,3) (92,) ( - 4 , - 3 ) \cup \left( \frac { 9 } { 2 } , \infty \right)
B) (a) {4}\{ - 4 \} , (b) {3,92}\left\{ - 3 , \frac { 9 } { 2 } \right\} , (c) (4,3) (92,) ( - 4 , - 3 ) \cup \left( \frac { 9 } { 2 } , \infty \right) , (d) (,4) (3,92) ( \infty , - 4 ) \cup \left( - 3 , \frac { 9 } { 2 } \right)
C) (a) {3,92}(\left\{ - 3 , \frac { 9 } { 2 } \right\} ( b ) {4},() \{ - 4 \} , \left( \right. c) (4,3) (92,) ( - 4 , - 3 ) \cup \left( \frac { 9 } { 2 } , \infty \right) , (d) (,4) (3,92) ( \infty , - 4 ) \cup \left( - 3 , \frac { 9 } { 2 } \right)
D) (a) {4}\{ - 4 \} , (b) {3,92}\left\{ - 3 , \frac { 9 } { 2 } \right\} , (c) (,4) (3,92) ( \infty , - 4 ) \cup \left( - 3 , \frac { 9 } { 2 } \right) , (d) (4,3) (92,) ( - 4 , - 3 ) \cup \left( \frac { 9 } { 2 } , \infty \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions