Solved

Determine the X Values That Cause the Function to Be f(x)=x+9(2x+3)(x2)f ( x ) = \frac { \sqrt { x + 9 } } { ( 2 x + 3 ) ( x - 2 ) }

Question 221

Multiple Choice

Determine the x values that cause the function to be (a) zero, (b) undefined, (c) positive, and (d) negative.
- f(x) =x+9(2x+3) (x2) f ( x ) = \frac { \sqrt { x + 9 } } { ( 2 x + 3 ) ( x - 2 ) }


A) (a) {9,2,32}\left\{ - 9,2 , - \frac { 3 } { 2 } \right\} , (b) (x,9) ( x , - 9 ) , (c) (9,32) (2,) \left( - 9 , - \frac { 3 } { 2 } \right) \cup ( 2 , \infty ) , (d) (32,2) \left( - \frac { 3 } { 2 } , 2 \right)
B) (a) {9}\{ - 9 \} , (b) {2,32}(,9) \left\{ 2 , - \frac { 3 } { 2 } \right\} \cup ( \infty , - 9 ) , (c) (9,32) (2,) \left( - 9 , - \frac { 3 } { 2 } \right) \cup ( 2 , \infty ) , (d) (32,2) \left( - \frac { 3 } { 2 } , 2 \right)
C) (a) {9}\{ - 9 \} , (b) {2,32}(,9) ,(c) (32,2) \left\{ 2 , - \frac { 3 } { 2 } \right\} \cup ( \infty , - 9 ) , ( c ) \left( - \frac { 3 } { 2 } , 2 \right) , (d) (9,32) (2,) \left( - 9 , - \frac { 3 } { 2 } \right) \cup ( 2 , \infty )
D) (a) {9,2,32}\left\{ - 9,2 , - \frac { 3 } { 2 } \right\} , (b) (,9) ,(c) (32,2) ( * , - 9 ) , ( \mathrm { c } ) \left( - \frac { 3 } { 2 } , 2 \right) , (d) (9,32) (2,) \left( - 9 , - \frac { 3 } { 2 } \right) \cup ( 2 , \infty )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions