Solved

Determine the X Values That Cause the Function to Be f(x)=3x4(x+6)x5f ( x ) = \frac { 3 x - 4 } { ( x + 6 ) \sqrt { x - 5 } }

Question 463

Multiple Choice

Determine the x values that cause the function to be (a) zero, (b) undefined, (c) positive, and (d) negative.
- f(x) =3x4(x+6) x5f ( x ) = \frac { 3 x - 4 } { ( x + 6 ) \sqrt { x - 5 } }


A) (a) \varnothing , (b) (,5) (\infty , 5 ) , (c) \varnothing , (d) (5,) ( 5 , \infty )
B) (a) {43}(\left\{ \frac { 4 } { 3 } \right\} \left( \right. b) {6,5}\{ - 6,5 \} , (c) (6,43) (53,) \left( - 6 , \frac { 4 } { 3 } \right) \cup \left( \frac { 5 } { 3 } , \infty \right) , (d) (,6) (43,5) (\infty , - 6 ) \cup \left( \frac { 4 } { 3 } , 5 \right)
C) (a) \varnothing , (b) (5,5) ( - 5,5 ) , (c) (5,) ( 5 , \infty ) , (d) \varnothing
D) (a) {43}\left\{ \frac { 4 } { 3 } \right\} (b) {6,5},(\{ - 6,5 \} , \left( \right. c) (,6) (43,5) ( - , - 6 ) \cup \left( \frac { 4 } { 3 } , 5 \right) , (d) (6,43) (53,) \left( - 6 , \frac { 4 } { 3 } \right) \cup \left( \frac { 5 } { 3 } , \infty \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions