Solved

Solve the Problem f1(x)=x2+100x;f2(x)=x2+80x+200f _ { 1 } ( x ) = - x ^ { 2 } + 100 x ; f _ { 2 } ( x ) = - x ^ { 2 } + 80 x + 200

Question 149

Multiple Choice

Solve the problem.
-The following information pertains to a bakery which makes donuts.
 Solve the problem. -The following information pertains to a bakery which makes donuts.    Make a scatterplot of the data. Then graph the following two functions on the same coordinate system:  f _ { 1 } ( x )  = - x ^ { 2 } + 100 x ; f _ { 2 } ( x )  = - x ^ { 2 } + 80 x + 200 . Decide which function best models the data, and then use that function to estimate the maximum possible profit. A)   \mathrm { f } _ { 1 } ; maximum profit is  \$ 2500 .  B)   \mathrm { f } _ { 2 } ;  maximum profit is  \$ 1800 .  C)   \mathrm { f } _ { 1 } ; maximum profit is  \$ 2900 . D)   \mathrm { f } _ { 2 } ;  maximum profit is  \$ 2670 .

Make a scatterplot of the data. Then graph the following two functions on the same coordinate system: f1(x) =x2+100x;f2(x) =x2+80x+200f _ { 1 } ( x ) = - x ^ { 2 } + 100 x ; f _ { 2 } ( x ) = - x ^ { 2 } + 80 x + 200 . Decide which function best models the data, and then use that function to estimate the maximum possible profit.


A) f1\mathrm { f } _ { 1 } ; maximum profit is $2500.\$ 2500 .
B) f2;\mathrm { f } _ { 2 } ; maximum profit is $1800.\$ 1800 .
C) f1\mathrm { f } _ { 1 } ; maximum profit is $2900\$ 2900 .
D) f2;\mathrm { f } _ { 2 } ; maximum profit is $2670.\$ 2670 .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions