Solved

Solve the Problem f1(x)=x2+100x;f2(x)=85x\mathrm { f } _ { 1 } ( \mathrm { x } ) = - \mathrm { x } ^ { 2 } + 100 \mathrm { x } ; \mathrm { f } _ { 2 } ( \mathrm { x } ) = 85 \mathrm { x }

Question 49

Multiple Choice

Solve the problem.
-The following information pertains to a bakery which makes donuts.
 Solve the problem. -The following information pertains to a bakery which makes donuts.    Make a scatterplot of the data. Then graph the following two functions on the same coordinate system:  \mathrm { f } _ { 1 } ( \mathrm { x } )  = - \mathrm { x } ^ { 2 } + 100 \mathrm { x } ; \mathrm { f } _ { 2 } ( \mathrm { x } )  = 85 \mathrm { x } . Decide which function best models the data, and then use that function to estimate the profit associated with making 45 cases of donuts. A)   \mathrm { f } _ { 2 } ; profit for 45 cases is  \$ 4500 . B)   \mathrm { f } _ { 2 } ; profit for 45 cases is  \$ 3825 . C)   \mathrm { f } _ { 1 } ; profit for 45 cases is  \$ 3675 . D)   \mathrm { f } _ { 1 } ; profit for 45 cases is  \$ 2475 .

Make a scatterplot of the data. Then graph the following two functions on the same coordinate system: f1(x) =x2+100x;f2(x) =85x\mathrm { f } _ { 1 } ( \mathrm { x } ) = - \mathrm { x } ^ { 2 } + 100 \mathrm { x } ; \mathrm { f } _ { 2 } ( \mathrm { x } ) = 85 \mathrm { x } . Decide which function best models the data, and then use that function to estimate the profit associated with making 45 cases of donuts.


A) f2\mathrm { f } _ { 2 } ; profit for 45 cases is $4500\$ 4500 .
B) f2\mathrm { f } _ { 2 } ; profit for 45 cases is $3825\$ 3825 .
C) f1\mathrm { f } _ { 1 } ; profit for 45 cases is $3675\$ 3675 .
D) f1\mathrm { f } _ { 1 } ; profit for 45 cases is $2475\$ 2475 .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions