Solved

Find F(x) and G(x) So That the Function Can Be y=1x24y = \frac { 1 } { x ^ { 2 } - 4 }

Question 221

Multiple Choice

Find f(x) and g(x) so that the function can be described as y = f(g(x) ) .
- y=1x24y = \frac { 1 } { x ^ { 2 } - 4 }


A) f(x) =14,g(x) =x24f ( x ) = \frac { 1 } { 4 } , g ( x ) = x ^ { 2 } - 4
B) f(x) =1x,g(x) =x24f ( x ) = \frac { 1 } { x } , g ( x ) = x ^ { 2 } - 4
C) f(x) =1x2,g(x) =x4f ( x ) = \frac { 1 } { x ^ { 2 } } , g ( x ) = x - 4
D) f(x) =1x2,g(x) =1/4f ( x ) = \frac { 1 } { x ^ { 2 } } , g ( x ) = - 1 / 4

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions