Solved

Which of the Following Products of Ratios Gives the Conversion (m s)\left(\frac{\mathrm{m}}{\mathrm{~s}}\right)

Question 16

Multiple Choice

Which of the following products of ratios gives the conversion factors to convert metres per second (m s) \left(\frac{\mathrm{m}}{\mathrm{~s}}\right) to parsecs per year ( Parsec  Year ) \left(\frac{\text { Parsec }}{\text { Year }}\right) ? A parsec is a unit of distance used in astrophysics, and is equal to 3.26 light years. A light year is 9.46 x 1015 m.


A) 1 parsec 3.26 light years 1 light year 9.46×1015m365 days 1 year 24 hours 1 day 3600 s1 hour \frac{1 \text { parsec }}{3.26 \text { light years }} \frac{1 \text { light year }}{9.46 \times 10^{15} m} \frac{365 \text { days }}{1 \text { year }} \frac{24 \text { hours }}{1 \text { day }} \frac{3600 \mathrm{~s}}{1 \text { hour }}
B) 1 parsec 3.26 light years 1 light year 9.46×1015m365 days 1 year 3600 s1 hour \frac{1 \text { parsec }}{3.26 \text { light years }} \frac{1 \text { light year }}{9.46 \times 10^{15} m} \frac{365 \text { days }}{1 \text { year }} \frac{3600 \mathrm{~s}}{1 \text { hour }}
C)  Which of the following products of ratios gives the conversion factors to convert metres per second  \left(\frac{\mathrm{m}}{\mathrm{~s}}\right)   to parsecs per year  \left(\frac{\text { Parsec }}{\text { Year }}\right)   ? A parsec is a unit of distance used in astrophysics, and is equal to 3.26 light years. A light year is 9.46 x 1015 m. A)   \frac{1 \text { parsec }}{3.26 \text { light years }} \frac{1 \text { light year }}{9.46 \times 10^{15} m} \frac{365 \text { days }}{1 \text { year }} \frac{24 \text { hours }}{1 \text { day }} \frac{3600 \mathrm{~s}}{1 \text { hour }}  B)   \frac{1 \text { parsec }}{3.26 \text { light years }} \frac{1 \text { light year }}{9.46 \times 10^{15} m} \frac{365 \text { days }}{1 \text { year }} \frac{3600 \mathrm{~s}}{1 \text { hour }}  C)    D)   \frac{1 \text { parsec }}{3.26 \text { light years }} \frac{1 \text { light year }}{9.46 \times 10^{15} m} \frac{1 \text { hour }}{3600 \mathrm{~s}} \frac{24 \text { hours }}{1 \text { day }} \frac{1 \text { year }}{365 \text { days }}  E)   \frac{1 \text { parsec }}{3.26 \text { light years }} \frac{1 \text { light year }}{9.46 \times 10^{15} m} \frac{365 \text { days }}{1 \text { year }} \frac{24 \text { hours }}{1 \text { day }} \frac{60 \mathrm{~s}}{1 \text { hour }}
D) 1 parsec 3.26 light years 1 light year 9.46×1015m1 hour 3600 s24 hours 1 day 1 year 365 days \frac{1 \text { parsec }}{3.26 \text { light years }} \frac{1 \text { light year }}{9.46 \times 10^{15} m} \frac{1 \text { hour }}{3600 \mathrm{~s}} \frac{24 \text { hours }}{1 \text { day }} \frac{1 \text { year }}{365 \text { days }}
E) 1 parsec 3.26 light years 1 light year 9.46×1015m365 days 1 year 24 hours 1 day 60 s1 hour \frac{1 \text { parsec }}{3.26 \text { light years }} \frac{1 \text { light year }}{9.46 \times 10^{15} m} \frac{365 \text { days }}{1 \text { year }} \frac{24 \text { hours }}{1 \text { day }} \frac{60 \mathrm{~s}}{1 \text { hour }}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions