Solved

The Left and from the Right by Completing the Tables

Question 16

Multiple Choice

 Determine whether f(x) =x10x29 approaches  or  as x approaches 3 from \text { Determine whether } f ( x ) = \frac { x ^ { 10 } } { x ^ { 2 } - 9 } \text { approaches } \infty \text { or } - \infty \text { as } x \text { approaches } - 3 \text { from } the left and from the right by completing the tables below.
x3.53.13.013.001f(x) \begin{array}{|c|c|c|c|c|}\hline x & -3.5 & -3.1 & -3.01 & -3.001 \\\hline f(x) & & & & \\\hline\end{array}

x2.9992.992.92.5f(x) \begin{array}{|c|c|c|c|c|}\hline x & -2.999 & -2.99 & -2.9 & -2.5 \\\hline f(x) & & & & \\\hline\end{array}


A) limx3f(x) =,limx3+f(x) =\lim _ { x \rightarrow - 3 ^ { - } } f ( x ) = - \infty , \lim _ { x \rightarrow - 3 ^ { + } } f ( x ) = \infty
B) limx3f(x) =,limx3+f(x) =\lim _{x \rightarrow-3^{-}} f(x) =\infty, \lim _{x \rightarrow-3^{+}} f(x) =-\infty
C) limx3f(x) =,limx3+f(x) =\lim _ { x \rightarrow - 3 ^ { - } } f ( x ) = - \infty , \lim _ { x \rightarrow - 3 ^ { + } } f ( x ) = \infty
D) limx3f(x) =,limx3+f(x) =\lim _ { x \rightarrow - 3 ^ { - } } f ( x ) = \infty , \lim _ { x \rightarrow - 3 ^ { + } } f ( x ) = -\infty

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions