Solved

 A petrol car is parked 65 feet from a long warehouse (see figure). The revolving \text { A petrol car is parked } 65 \text { feet from a long warehouse (see figure). The revolving }

Question 25

Multiple Choice

 A petrol car is parked 65 feet from a long warehouse (see figure) . The revolving \text { A petrol car is parked } 65 \text { feet from a long warehouse (see figure) . The revolving } light on top of the car turns at a rate of 12\frac { 1 } { 2 } revolution per second. The rate at which the light beam moves along the wall is r=65πsec2θft/secr = 65 \pi \sec ^ { 2 } \theta \mathrm { ft } / \mathrm { sec } . Find the limit of rr as θ(π/2) \theta \rightarrow ( \pi / 2 ) ^ { - } .
\text { A petrol car is parked } 65 \text { feet from a long warehouse (see figure) . The revolving }  light on top of the car turns at a rate of  \frac { 1 } { 2 }  revolution per second. The rate at which the light beam moves along the wall is  r = 65 \pi \sec ^ { 2 } \theta \mathrm { ft } / \mathrm { sec } . Find the limit of  r  as  \theta \rightarrow ( \pi / 2 )  ^ { - } .    A)   \infty  B)   65 \pi  C)  0 D)  65 E)   - \infty


A) \infty
B) 65π65 \pi
C) 0
D) 65
E) - \infty

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions