Solved

 Locate the absolute extrema of the function f(x)=sinπx on the closed interval \text { Locate the absolute extrema of the function } f ( x ) = \sin \pi x \text { on the closed interval }

Question 22

Multiple Choice

 Locate the absolute extrema of the function f(x) =sinπx on the closed interval \text { Locate the absolute extrema of the function } f ( x ) = \sin \pi x \text { on the closed interval } [0,13]\left[ 0 , \frac { 1 } { 3 } \right]


A) The absolute minimum is 0 , and it occurs at the left endpoint x=0x = 0 . The absolute maximum is 32\frac { \sqrt { 3 } } { 2 } , and it occurs at the right endpoint x=13x = \frac { 1 } { 3 } .
B) The absolute minimum is 0 , and it occurs at the right endpoint x=13x = \frac { 1 } { 3 } .
The absolute maximum is 12\frac { 1 } { 2 } , and it occurs at the left endpoint x=0x = 0 .
C) The absolute minimum is 0 , and it occurs at the left endpoint x=0x = 0 . The absolute maximum is 12\frac { 1 } { 2 } , and it occurs at the right endpoint x=13x = \frac { 1 } { 3 } .
D) The absolute minimum is 0 , and it occurs at the right endpoint x=13x = \frac { 1 } { 3 } .
The absolute maximum is 22\frac { \sqrt { 2 } } { 2 } and it occurs at the left endpoint x=0x = 0 .
E) The absolute minimum is 0 , and it occurs at the left endpoint x=0x = 0 .
The absolute maximum is 22\frac { \sqrt { 2 } } { 2 } , and it occurs at the right endpoint x=13x = \frac { 1 } { 3 } .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions