Solved

Determine Whether Rolle's Theorem Can Be Applied to the Function f(x)=cosπx on f ( x ) = \cos \pi x \text { on }

Question 36

Multiple Choice

Determine whether Rolle's Theorem can be applied to the function f(x) =cosπx on f ( x ) = \cos \pi x \text { on } the closed interval [12,12]\left[ - \frac { 1 } { 2 } , \frac { 1 } { 2 } \right] . If Rolle's Theorem can be applied, find all numbers cc in the open interval (12,12) \left( - \frac { 1 } { 2 } , \frac { 1 } { 2 } \right) such that ft(c) =0f ^ { t } ( c ) = 0 .


A) Rolle's Theorem applies; c=0c = 0
B) Rolle's Theorem applies; c=14,14c = - \frac { 1 } { 4 } , \frac { 1 } { 4 }
C) Rolle's Theorem applies; c=0,14,14c = 0 , - \frac { 1 } { 4 } , \frac { 1 } { 4 }
D) Rolle's Theorem applies; c=14c = \frac { 1 } { 4 }
E) Rolle's Theorem does not apply.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions