Solved

Identify the Open Intervals Where the Function f(x)=x30x2f ( x ) = x \sqrt { 30 - x ^ { 2 } }

Question 123

Multiple Choice

Identify the open intervals where the function f(x) =x30x2f ( x ) = x \sqrt { 30 - x ^ { 2 } }
is increasing or decreasing.


A) decreasing: (,15) ( - \infty , \sqrt { 15 } ) ; increasing: (15,) ( \sqrt { 15 } , \infty )
B) decreasing on (,) ( - \infty , \infty )
C) increasing: (,30) ( - \infty , \sqrt { 30 } ) ; decreasing: (30,) ( \sqrt { 30 } , \infty )
D) increasing: (15,15) ;( - \sqrt { 15 } , \sqrt { 15 } ) ; decreasing: (30,15) (15,30) ( - \sqrt { 30 } , - \sqrt { 15 } ) \cup ( \sqrt { 15 } , \sqrt { 30 } )
E) increasing: (30,15) (15,30) ;( - \sqrt { 30 } , \sqrt { 15 } ) \cup ( \sqrt { 15 } , \sqrt { 30 } ) ; decreasing: (15,15) ( - \sqrt { 15 } , \sqrt { 15 } )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions