Solved

Find the Points of Inflection and Discuss the Concavity of the Function

Question 86

Multiple Choice

Find the points of inflection and discuss the concavity of the function f(x) =8x2cosxf ( x ) = - 8 x - 2 \cos x on the interval [0,2π][ 0,2 \pi ]


A) concave down on (0,2π) ( 0,2 \pi ) ; no points of inflection
B) concave downward on (π2,3π2) ;\left( \frac { \pi } { 2 } , \frac { 3 \pi } { 2 } \right) ; concave upward on (0,π2) ,(3π2,2π) \left( 0 , \frac { \pi } { 2 } \right) , \left( \frac { 3 \pi } { 2 } , 2 \pi \right) ; inflection points at x=π2x = \frac { \pi } { 2 } and x=3π2x = \frac { 3 \pi } { 2 }
C) concave upward on (π2,3π2) ;\left( \frac { \pi } { 2 } , \frac { 3 \pi } { 2 } \right) ; concave downward on (0,π2) ,(3π2,2π) \left( 0 , \frac { \pi } { 2 } \right) , \left( \frac { 3 \pi } { 2 } , 2 \pi \right) inflection points at x=π2x = \frac { \pi } { 2 } and x=3π2x = \frac { 3 \pi } { 2 }
D) concave up on (0,2π) ( 0,2 \pi ) ; no points of inflection
E) none of the above

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions