Solved

Set Up and Evaluate the Integral That Gives the Volume y=8y = 8

Question 52

Multiple Choice

Set up and evaluate the integral that gives the volume of the solid formed by revolving the region bounded by y=8y = 8 and y=16x216y = 16 - \frac { x ^ { 2 } } { 16 } about the xx -axis.


A) V=π1616((16x216) 264) dx=7168152πV = \pi \int _ { - 16 } ^ { 16 } \left( \left( 16 - \frac { x ^ { 2 } } { 16 } \right) ^ { 2 } - 64 \right) d x = \frac { 7168 } { 15 } \sqrt { 2 } \pi
B) V=π8282((16x216) 264) dx=14336152πV = \pi \int _ { - 8 \sqrt { 2 } } ^ { 8 \sqrt { 2 } } \left( \left( 16 - \frac { x ^ { 2 } } { 16 } \right) ^ { 2 } - 64 \right) d x = \frac { 14336 } { 15 } \sqrt { 2 } \pi
C) V=π1616((16x216) 264) dx=28672152πV = \pi \int _ { - 16 } ^ { 16 } \left( \left( 16 - \frac { x ^ { 2 } } { 16 } \right) ^ { 2 } - 64 \right) d x = \frac { 28672 } { 15 } \sqrt { 2 } \pi
D) V=π8282(16x216) 264) dx=28672152π\left. V = \pi \int _ { - 8 \sqrt { 2 } } ^ { 8 \sqrt { 2 } } \left( 16 - \frac { x ^ { 2 } } { 16 } \right) ^ { 2 } - 64 \right) d x = \frac { 28672 } { 15 } \sqrt { 2 } \pi
E) V=π1616((16x216) 264) dx=14336152πV = \pi \int _ { - 16 } ^ { 16 } \left( \left( 16 - \frac { x ^ { 2 } } { 16 } \right) ^ { 2 } - 64 \right) d x = \frac { 14336 } { 15 } \sqrt { 2 } \pi

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions