Solved

Set Up and Evaluate the Integral That Gives the Volume y=x8y = x ^ { 8 }

Question 10

Multiple Choice

Set up and evaluate the integral that gives the volume of the solid formed by revolving the region bounded by y=x8y = x ^ { 8 } and y=256y = 256 in the first quadrant about the yy -axis.


A) V=π08y18dy=4,0965πV = \pi \int _ { 0 } ^ { 8 } y ^ { \frac { 1 } { 8 } } d y = \frac { 4,096 } { 5 } \pi
B) V=π08y14dy=2,0485πV = \pi \int _ { 0 } ^ { 8 } y ^ { \frac { 1 } { 4 } } d y = \frac { 2,048 } { 5 } \pi
C) V=π0256y14dy=2,0485πV = \pi \int _ { 0 } ^ { 256 } y ^ { \frac { 1 } { 4 } } d y = \frac { 2,048 } { 5 } \pi
D) V=π0256y18dy=2,0485πV = \pi \int _ { 0 } ^ { 256 } y ^ { \frac { 1 } { 8 } } d y = \frac { 2,048 } { 5 } \pi
E) V=π0256y14dy=4,0965πV = \pi \int _ { 0 } ^ { 256 } y ^ { \frac { 1 } { 4 } } d y = \frac { 4,096 } { 5 } \pi

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions