Solved

Use the Shell Method to Set Up and Evaluate an Integral

Question 19

Multiple Choice

Use the shell method to set up and evaluate an integral that gives the volume of the solid generated by revolving the plane region about the y-axis. y=25x2,y=0y = 25 - x ^ { 2 } , y = 0


A) V=4π05x(25x2) dx=625πV = 4 \pi \int _ { 0 } ^ { 5 } x \left( 25 - x ^ { 2 } \right) d x = 625 \pi
B) V=4π55x(25x2) dx=625πV = 4 \pi \int _ { - 5 } ^ { 5 } x \left( 25 - x ^ { 2 } \right) d x = 625 \pi
C) V=2π50x(25x2) dx=625πV = 2 \pi \int _ { - 5 } ^ { 0 } x \left( 25 - x ^ { 2 } \right) d x = 625 \pi
D) V=2π05x(25x2) dx=6252πV = 2 \pi \int _ { 0 } ^ { 5 } x \left( 25 - x ^ { 2 } \right) d x = \frac { 625 } { 2 } \pi
E) V=2π55x(25x2) dx=6252πV = 2 \pi \int _ { - 5 } ^ { 5 } x \left( 25 - x ^ { 2 } \right) d x = \frac { 625 } { 2 } \pi

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions