Solved

Find the Maclaurin Polynomial of Degree 4 for the Function f(x)=e9xf ( x ) = e ^ { 9 x }

Question 60

Multiple Choice

Find the Maclaurin polynomial of degree 4 for the function. f(x) =e9xf ( x ) = e ^ { 9 x }


A) 1+9x+812x2+2432x3+21878x41 + 9 x + \frac { 81 } { 2 } x ^ { 2 } + \frac { 243 } { 2 } x ^ { 3 } + \frac { 2187 } { 8 } x ^ { 4 }
B) 19x+272x2+2432x3+21878x41 - 9 x + \frac { 27 } { 2 } x ^ { 2 } + \frac { 243 } { 2 } x ^ { 3 } + \frac { 2187 } { 8 } x ^ { 4 }
C) 19x+272x22434x3+218716x41 - 9 x + \frac { 27 } { 2 } x ^ { 2 } - \frac { 243 } { 4 } x ^ { 3 } + \frac { 2187 } { 16 } x ^ { 4 }
D) 1+9x+272x2+2434x3+218716x41 + 9 x + \frac { 27 } { 2 } x ^ { 2 } + \frac { 243 } { 4 } x ^ { 3 } + \frac { 2187 } { 16 } x ^ { 4 }
E) 1+9x+812x2+7294x3+21872x41 + 9 x + \frac { 81 } { 2 } x ^ { 2 } + \frac { 729 } { 4 } x ^ { 3 } + \frac { 2187 } { 2 } x ^ { 4 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions