Solved

Find the Maclaurin Polynomial of Degree 3 for the Function f(x)=e9xf ( x ) = e ^ { - 9 x }

Question 77

Multiple Choice

Find the Maclaurin polynomial of degree 3 for the function.
f(x) =e9xf ( x ) = e ^ { - 9 x }


A) 1+9x812x2+2432x3- 1 + 9 x - \frac { 81 } { 2 } x ^ { 2 } + \frac { 243 } { 2 } x ^ { 3 }
B) 19x+812x22432x31 - 9 x + \frac { 81 } { 2 } x ^ { 2 } - \frac { 243 } { 2 } x ^ { 3 }
C) 1+9x+812x2+2432x31 + 9 x + \frac { 81 } { 2 } x ^ { 2 } + \frac { 243 } { 2 } x ^ { 3 }
D) 19x812x22432x31 - 9 x - \frac { 81 } { 2 } x ^ { 2 } - \frac { 243 } { 2 } x ^ { 3 }
E) 19x+812x2+2432x31 - 9 x + \frac { 81 } { 2 } x ^ { 2 } + \frac { 243 } { 2 } x ^ { 3 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions