Solved

Explain How to Use the Geometric Series g(x)=11x=n=0xn,x<1 to find the g ( x ) = \frac { 1 } { 1 - x } = \sum _ { n = 0 } ^ { \infty } x ^ { n } , | x | < 1 \text { to find the }

Question 118

Multiple Choice

Explain how to use the geometric series g(x) =11x=n=0xn,x<1 to find the g ( x ) = \frac { 1 } { 1 - x } = \sum _ { n = 0 } ^ { \infty } x ^ { n } , | x | < 1 \text { to find the } series for the function 91+x\frac { 9 } { 1 + x } .


A) replace xx with 9(x) \frac { 9 } { ( - x ) }
B) replace xx with (x) ( - x ) and multiply the series by 9
C) replace xx with 1x\frac { 1 } { x } and divide the series by 9
D) replace xx with (x) ( - x ) and divide the series by 9
E) replace xx with 9x\frac { 9 } { x }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions