Solved

Sketch the Curve Represented by the Parametric Equations, and Write x=tx = t

Question 17

Multiple Choice

Sketch the curve represented by the parametric equations, and write the corresponding rectangular equation by eliminating the parameter. x=tx = t
y=lnty = \ln t


A) x21+y225=1\frac { x ^ { 2 } } { 1 } + \frac { y ^ { 2 } } { 25 } = 1
 Sketch the curve represented by the parametric equations, and write the corresponding rectangular equation by eliminating the parameter.  x = t   y = \ln t  A)   \frac { x ^ { 2 } } { 1 } + \frac { y ^ { 2 } } { 25 } = 1    B)   y = e ^ { x }    C)   y = x ^ { 2 } - 1 , x \geq 0    D)   y = \ln x    E)   y = x + 1
B) y=exy = e ^ { x }
 Sketch the curve represented by the parametric equations, and write the corresponding rectangular equation by eliminating the parameter.  x = t   y = \ln t  A)   \frac { x ^ { 2 } } { 1 } + \frac { y ^ { 2 } } { 25 } = 1    B)   y = e ^ { x }    C)   y = x ^ { 2 } - 1 , x \geq 0    D)   y = \ln x    E)   y = x + 1
C) y=x21,x0y = x ^ { 2 } - 1 , x \geq 0
 Sketch the curve represented by the parametric equations, and write the corresponding rectangular equation by eliminating the parameter.  x = t   y = \ln t  A)   \frac { x ^ { 2 } } { 1 } + \frac { y ^ { 2 } } { 25 } = 1    B)   y = e ^ { x }    C)   y = x ^ { 2 } - 1 , x \geq 0    D)   y = \ln x    E)   y = x + 1
D) y=lnxy = \ln x
 Sketch the curve represented by the parametric equations, and write the corresponding rectangular equation by eliminating the parameter.  x = t   y = \ln t  A)   \frac { x ^ { 2 } } { 1 } + \frac { y ^ { 2 } } { 25 } = 1    B)   y = e ^ { x }    C)   y = x ^ { 2 } - 1 , x \geq 0    D)   y = \ln x    E)   y = x + 1
E) y=x+1y = x + 1
 Sketch the curve represented by the parametric equations, and write the corresponding rectangular equation by eliminating the parameter.  x = t   y = \ln t  A)   \frac { x ^ { 2 } } { 1 } + \frac { y ^ { 2 } } { 25 } = 1    B)   y = e ^ { x }    C)   y = x ^ { 2 } - 1 , x \geq 0    D)   y = \ln x    E)   y = x + 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions