Solved

Write an Integral That Represents the Area of the Shaded r=cos2θ as r = \cos 2 \theta \text { as }

Question 28

Multiple Choice

Write an integral that represents the area of the shaded region for r=cos2θ as r = \cos 2 \theta \text { as } shown in the figure. Do not evaluate the integral.  Write an integral that represents the area of the shaded region for  r = \cos 2 \theta \text { as }  shown in the figure. Do not evaluate the integral.   A)  \int _ { - 5 \pi / 4 } ^ { - 3 \pi / 4 } ( \cos 2 \theta )  ^ { 2 } d \theta  B)  \int _ { - 5 \pi / 2 } ^ { - 3 \pi / 2 } ( \cos 2 \theta )  ^ { 2 } d \theta  C)   \frac { 1 } { 2 } \int _ { 3 \pi / 2 } ^ { 5 \pi / 2 } ( \cos 2 \theta )  ^ { 2 } d \theta  D)   \frac { 1 } { 2 } \int _ { - 5 \pi / 4 } ^ { - 3 \pi / 4 } ( \cos 2 \theta )  ^ { 2 } d \theta  E)   \frac { 1 } { 2 } \int _ { 3 \pi / 4 } ^ { 5 \pi / 4 } ( \cos 2 \theta )  ^ { 2 } d \theta


A) 5π/43π/4(cos2θ) 2dθ\int _ { - 5 \pi / 4 } ^ { - 3 \pi / 4 } ( \cos 2 \theta ) ^ { 2 } d \theta
B) 5π/23π/2(cos2θ) 2dθ\int _ { - 5 \pi / 2 } ^ { - 3 \pi / 2 } ( \cos 2 \theta ) ^ { 2 } d \theta
C) 123π/25π/2(cos2θ) 2dθ\frac { 1 } { 2 } \int _ { 3 \pi / 2 } ^ { 5 \pi / 2 } ( \cos 2 \theta ) ^ { 2 } d \theta
D) 125π/43π/4(cos2θ) 2dθ\frac { 1 } { 2 } \int _ { - 5 \pi / 4 } ^ { - 3 \pi / 4 } ( \cos 2 \theta ) ^ { 2 } d \theta
E) 123π/45π/4(cos2θ) 2dθ\frac { 1 } { 2 } \int _ { 3 \pi / 4 } ^ { 5 \pi / 4 } ( \cos 2 \theta ) ^ { 2 } d \theta

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions