Solved

Find the Direction Cosines of the Vector U Given Below u=4i+4j+5k\mathbf { u } = 4 \mathbf { i } + 4 \mathbf { j } + 5 \mathbf { k }

Question 101

Multiple Choice

Find the direction cosines of the vector u given below. u=4i+4j+5k\mathbf { u } = 4 \mathbf { i } + 4 \mathbf { j } + 5 \mathbf { k }


A)
cos(α) =1657,cos(β) =1657,cos(γ) =2557\cos ( \alpha ) = \frac { 16 } { \sqrt { 57 } } , \cos ( \beta ) = \frac { 16 } { \sqrt { 57 } } , \cos ( \gamma ) = \frac { 25 } { \sqrt { 57 } }
B)
cos(α) =857,cos(β) =857,cos(γ) =1057\cos ( \alpha ) = \frac { - 8 } { \sqrt { 57 } } , \cos ( \beta ) = \frac { - 8 } { \sqrt { 57 } } , \cos ( \gamma ) = \frac { - 10 } { \sqrt { 57 } }
C)
cos(α) =457,cos(β) =457,cos(γ) =557\cos ( \alpha ) = \frac { 4 } { \sqrt { 57 } } , \cos ( \beta ) = \frac { 4 } { \sqrt { 57 } } , \cos ( \gamma ) = \frac { 5 } { \sqrt { 57 } }
D)
cos(α) =857,cos(β) =857,cos(γ) =1057\cos ( \alpha ) = \frac { 8 } { \sqrt { 57 } } , \cos ( \beta ) = \frac { 8 } { \sqrt { 57 } } , \cos ( \gamma ) = \frac { 10 } { \sqrt { 57 } }
E)
cos(α) =457,cos(β) =457,cos(γ) =557\cos ( \alpha ) = \frac { - 4 } { \sqrt { 57 } } , \cos ( \beta ) = \frac { - 4 } { \sqrt { 57 } } , \cos ( \gamma ) = \frac { - 5 } { \sqrt { 57 } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions