Solved

Find the Partial Derivative zx for the function z=cos(x8+y8)\frac { \partial z } { \partial x } \text { for the function } z = \cos \left( x ^ { 8 } + y ^ { 8 } \right) \text {. }

Question 29

Multiple Choice

Find the partial derivative zx for the function z=cos(x8+y8) \frac { \partial z } { \partial x } \text { for the function } z = \cos \left( x ^ { 8 } + y ^ { 8 } \right) \text {. }


A) zx=8x7sin(x8+y8) \frac { \partial z } { \partial x } = - 8 x ^ { 7 } \sin \left( x ^ { 8 } + y ^ { 8 } \right)
B) zx=8x9sin(x9+y9) \frac { \partial z } { \partial x } = 8 x ^ { 9 } \sin \left( x ^ { 9 } + y ^ { 9 } \right)
C) zx=8x9sin(x8+y8) \frac { \partial z } { \partial x } = - 8 x ^ { 9 } \sin \left( x ^ { 8 } + y ^ { 8 } \right)
D) zx=8x9cos(x9+y9) \frac { \partial z } { \partial x } = 8 x ^ { 9 } \cos \left( x ^ { 9 } + y ^ { 9 } \right)
E) zx=8x7cos(x8+y8) \frac { \partial z } { \partial x } = 8 x ^ { 7 } \cos \left( x ^ { 8 } + y ^ { 8 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions